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Abstract

We have developed a Monte Carlo model of the Earth’s atmosphere and implemented it in three
different codes (GEANT4, MCNPX, and FLUKA). Primary protons in the energy range of 1 GeV - 100
TeV are injected at the top of the atmosphere. The codes follow the tracks of all relevant secondary
particles (neutrons, muons, gammas, electrons, and pions)and tally their fluxes at selectable altitudes.
Comparisons with cosmic ray data at sea level show good agreement.

1 Model of Atmosphere

The atmosphere was modeled as a series of 42 constant-density flat layers, each composed of 78 change
between adjacent layers was set to 10%, and the densities were derived from the 1976 US Atmosphere
Model. The top of the atmosphere in our model was located at analtitude of∼ 31 km, and the integrated
column density was∼ 1000 g/cm2. Void cells were placed at both top and bottom.

2 Cosmic Primaries

The flux of cosmic ray particles in the atmosphere and on the ground is mostly due to galactic protons, with
minor contributions from alphas and heavier nuclei. At present, we restrict ourselves to the MC modeling
of primary protons only. Figure 1 shows the spectrum of galactic protons at Earth. The low-E flux is anti-
correlated with the solar wind. As more magnetized solar plasma fills the interplanetary system, the more
low-E energy galactic protons are deflected away from Earth.The Earth’s magnetic field acts as a further
filter on the low-E spectrum, effectively imposing a low energy latitude-dependent cutoff (∼ 15 GeV at the
equator, 0 GeV at the poles).
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Figure 1: Spectrum of Galactic Protons incident on Earth [1].

3 Inter-Code Comparisons

Instead of relying on a single MC code and to guard against potential pitfalls, we ran a couple of problems
with three independently developed multi-purpose codes, i.e. Fluka-2005, Geant4, and Mcnpx-v2.5.0. The
same model of the atmosphere was implemented in each code andprimary protons of fixed energy were
injected at the top and the particles of interest (muons, neutrons, protons, gammas, electrons, and pions)
were tallied at sea level.

Our general conclusion is that the codes give almost equivalent spectra for all particles except neutrons
below 1 MeV, where Geant4 predicts too small of a flux. Neutrontransport at these energies has only
recently been implemented in Geant4. On the other hand, Fluka and especially Mcnpx have been heavily
used and are considered verified and validated in this energyregion.

Figures 2 and 3 show the tallied neutron and gamma spectra at sea level for incident proton energies of
1 TeV and 100 GeV respectively.
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Figure 2: MC-generated neutron spectra at sea level. The incident proton energy is 1TeV.

Figure 3: MC-generated gamma spectra at sea level . The incident proton energy is 100GeV.
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4 Code-Data Comparisons

Most of our high statistics production runs were made with Mcnpx v.2.5.0 and comprise ¿ 10000 cpu-hrs. To
this end, we divided the shaded region into 33 energy groups:14 equally spaced flat bins from 1 GeV to 15
GeV, plus 19 logarithmically spaced bins up to 100 TeV. The latter ones had a power law distribution within
each bin with a spectral index of 2.7. All protons were sourced with an isotropic angular distribution and
the atmosphere response functions were accumulated for each incident energy bin. By suitable weighting
and co-adding of sub spectra, total absolute spectra at any position in the solar cycle and any value of the
geomagnetic cutoff can be calculated.

Shown in Figures 4-7 are the predicted muon, proton, pion , and neutron fluxes for no geomagnetic
cutoff and average solar modulation, along with the data points from Rastin[2], Brooke and Wolfendale [3],
Ashton and Saleh [4], and Kornmayer et al [5] .

Figure 4: MC-generated muon spectrum and data measured at sea level.

4



Figure 5: MC-generated proton spectrum and data measured atsea level.

Figure 6: MC-generated pion spectrum and data measured at sea level.
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Figure 7: MC-generated neutron spectrum and data measured at sea level.
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5 Conclusion

We have calculated cosmic ray fluxes at sea level employing three different Monte Carlo codes. Except for
low energy neutrons, all codes give essentially similar distributions of cosmic ray secondaries. We have also
compared our calculations to published data and found good agreement. Hence MC calculations should give
quite reliable predictons of cosmic ray distributions in situations where data are not available.

References

[1] P. Papini, C. Grimani,and S.A. Stephens, Nuovo Cim C 19 , 367 (1996).

[2] B.C. Rastin, J. Phys. G: Nucl. Part. Phys. 10, 1609 (1984).

[3] G. Brooke and A. Wolfendale Proc. Phys. Soc. 83, 843 (1964).

[4] F.Ashton and A. Saleh PICRC 7, 2707 (1975).

[5] H. Kornmayer et al., J. Phys. G: Nucl. Part. Phys. 21, 439 (1995).

7


